Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Diabetes Obes Metab ; 2023 May 30.
Article in English | MEDLINE | ID: covidwho-20234786

ABSTRACT

AIMS: This study characterized incidence, patient profiles, risk factors and outcomes of in-hospital diabetic ketoacidosis (DKA) in patients with COVID-19 compared with influenza and pre-pandemic data. METHODS: This study consisted of 13 383 hospitalized patients with COVID-19 (March 2020-July 2022), 19 165 hospitalized patients with influenza (January 2018-July 2022) and 35 000 randomly sampled hospitalized pre-pandemic patients (January 2017-December 2019) in Montefiore Health System, Bronx, NY, USA. Primary outcomes were incidence of in-hospital DKA, in-hospital mortality, and insulin use at 3 and 6 months post-infection. Risk factors for developing DKA were identified. RESULTS: The overall incidence of DKA in patients with COVID-19 and influenza, and pre-pandemic were 2.1%, 1.4% and 0.5%, respectively (p < .05 pairwise). Patients with COVID-19 with DKA had worse acute outcomes (p < .05) and higher incidence of new insulin treatment 3 and 6 months post-infection compared with patients with influenza with DKA (p < .05). The incidence of DKA in patients with COVID-19 was highest among patients with type 1 diabetes (12.8%), followed by patients with insulin-dependent type 2 diabetes (T2D; 5.2%), non-insulin dependent T2D (2.3%) and, lastly, patients without T2D (1.3%). Patients with COVID-19 with DKA had worse disease severity and higher mortality [odds ratio = 6.178 (4.428-8.590), p < .0001] compared with those without DKA. Type 1 diabetes, steroid therapy for COVID-19, COVID-19 status, black race and male gender were associated with increased risk of DKA. CONCLUSIONS: The incidence of DKA was higher in COVID-19 cohort compared to the influenza and pre-pandemic cohort. Patients with COVID-19 with DKA had worse outcomes compared with those without. Many COVID-19 survivors who developed DKA during hospitalization became insulin dependent. Identification of risk factors for DKA and new insulin-dependency could enable careful monitoring and timely intervention.

2.
Curr Med Res Opin ; 39(4): 505-516, 2023 04.
Article in English | MEDLINE | ID: covidwho-2231242

ABSTRACT

OBJECTIVE: Type 2 diabetes mellitus (T2DM) and impaired kidney function are associated with a higher risk of poor outcomes of coronavirus disease 2019 (COVID-19). We conducted a retrospective study in hospitalized T2DM patients with COVID-19 to assess the association between in-hospital mortality and admission values of different hematological/biochemical parameters, including estimated glomerular filtration rate (eGFR), plasma glucose and C-peptide (the latter serving as a marker of beta-cell function). METHODS: The study included T2DM patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection who were consecutively admitted to our Institution between 1 October 2020 and 1 April 2021. RESULTS: Patients (n = 74) were categorized into survivors (n = 55) and non-survivors (n = 19). Non-survivors exhibited significantly higher median white blood cell (WBC) count, D-dimer, neutrophil-to-lymphocyte ratio, high-sensitivity C-reactive protein (hsCRP), and procalcitonin levels, as well as significantly lower median serum 25-hydroxyvitamin D [25(OH)D] levels compared to survivors. Non-survivors exhibited significantly higher median admission plasma glucose (APG) values compared to survivors (210 vs. 166 mg/dL; p = .026). There was no statistically significant difference in median values of (random) plasma C-peptide between non-survivors and survivors (3.55 vs. 3.24 ng/mL; p = .906). A significantly higher percentage of patients with an eGFR < 60 mL/min/1.73 m2 was observed in the non-survivor group as compared to the survivor group (57.9% vs. 23.6%; p = .006). A multivariate analysis performed by a logistic regression model after adjusting for major confounders (age, sex, body mass index, major comorbidities) showed a significant inverse association between admission eGFR values and risk of in-hospital mortality (OR, 0.956; 95% CI, 0.931-0.983; p = .001). We also found a significant positive association between admission WBC count and risk of in-hospital mortality (OR, 1.210; 95% CI, 1.043-1.404; p = .011). CONCLUSIONS: Admission eGFR and WBC count predict in-hospital COVID-19 mortality among T2DM patients, independently of traditional risk factors, APG and random plasma C-peptide. Hospitalized patients with COVID-19 and comorbid T2DM associated with impaired kidney function at admission should be considered at high risk for adverse outcomes and death.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Humans , COVID-19/complications , SARS-CoV-2 , Diabetes Mellitus, Type 2/complications , C-Peptide , Retrospective Studies , Glomerular Filtration Rate , Hospital Mortality , Blood Glucose
3.
Trials ; 23(1): 414, 2022 May 18.
Article in English | MEDLINE | ID: covidwho-1862143

ABSTRACT

BACKGROUND: The INNODIA consortium has established a pan-European infrastructure using validated centres to prospectively evaluate clinical data from individuals with newly diagnosed type 1 diabetes combined with centralised collection of clinical samples to determine rates of decline in beta-cell function and identify novel biomarkers, which could be used for future stratification of phase 2 clinical trials. METHODS: In this context, we have developed a Master Protocol, based on the "backbone" of the INNODIA natural history study, which we believe could improve the delivery of phase 2 studies exploring the use of single or combinations of Investigational Medicinal Products (IMPs), designed to prevent or reverse declines in beta-cell function in individuals with newly diagnosed type 1 diabetes. Although many IMPs have demonstrated potential efficacy in phase 2 studies, few subsequent phase 3 studies have confirmed these benefits. Currently, phase 2 drug development for this indication is limited by poor evaluation of drug dosage and lack of mechanistic data to understand variable responses to the IMPs. Identification of biomarkers which might permit more robust stratification of participants at baseline has been slow. DISCUSSION: The Master Protocol provides (1) standardised assessment of efficacy and safety, (2) comparable collection of mechanistic data, (3) the opportunity to include adaptive designs and the use of shared control groups in the evaluation of combination therapies, and (4) benefits of greater understanding of endpoint variation to ensure more robust sample size calculations and future baseline stratification using existing and novel biomarkers.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Adolescent , Adult , Biomarkers , Child , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/drug therapy , Humans , SARS-CoV-2 , Treatment Outcome
4.
Journal Fur Mineralstoffwechsel & Muskuloskelettale Erkrankungen ; 28(1):2-11, 2021.
Article in German | Web of Science | ID: covidwho-1729450

ABSTRACT

Vitamin D is provided by nutritional sources or by skin synthesis under the influence of UV light. In the liver, vitamin D is converted to 25(OH)-vitamin D and finally in the kidney to 1,25(OH)2-vitamin D, which is a hormone regulating bone andmineralmetabolism. Besides the kidneys, other organs are also capable of making 1,25(OH)2-vitamin D, which exerts autocrine and paracrine effects. For these pleiotropic effects, a continuous vitamin D supply (daily supplements) with moderate doses is more effective than high-dose bolus applications. Beside the classical effects of 1,25(OH)2-vitamin D on the musculoskeletal system, there is good evidence for extraskeletal effects on the immune system. A good vitamin D supply can reduce the risk of respiratory infections. At the present time, the preventive and therapeutic use of vitamin D regarding COVID-19 (coronavirus disease 19) is of great interest.

SELECTION OF CITATIONS
SEARCH DETAIL